Annals of Glaciology (Dec 2020)

Characterizing winter landfast sea-ice surface roughness in the Canadian Arctic Archipelago using Sentinel-1 synthetic aperture radar and the Multi-angle Imaging SpectroRadiometer

  • Rebecca A. Segal,
  • Randall K. Scharien,
  • Silvie Cafarella,
  • Andrew Tedstone

DOI
https://doi.org/10.1017/aog.2020.48
Journal volume & issue
Vol. 61
pp. 284 – 298

Abstract

Read online

Two satellite datasets are used to characterize winter landfast first-year sea-ice (FYI), deformed FYI (DFYI) and multiyear sea-ice (MYI) roughness in the Canadian Arctic Archipelago (CAA): (1) optical Multi-angle Imaging SpectroRadiometer (MISR) and (2) synthetic aperture radar Sentinel-1. The Normalized Difference Angular Index (NDAI) roughness proxy derived from MISR, and backscatter from Sentinel-1 are intercompared. NDAI and backscatter are also compared to surface roughness derived from an airborne LiDAR track covering a subset of FYI and MYI (no DFYI). Overall, NDAI and backscatter are significantly positively correlated when all ice type samples are considered. When individual ice types are evaluated, NDAI and backscatter are only significantly correlated for DFYI. Both NDAI and backscatter are correlated with LiDAR-derived roughness (r = 0.71 and r = 0.74, respectively). The relationship between NDAI and roughness is greater for MYI than FYI, whereas for backscatter and ice roughness, the relationship is greater for FYI than MYI. Linear regression models are created for the estimation of FYI and MYI roughness from NDAI, and FYI roughness from backscatter. Results suggest that using a combination of Sentinel-1 backscatter for FYI and MISR NDAI for MYI may be optimal for mapping winter sea-ice roughness in the CAA.

Keywords