Systematic Reviews (Jun 2017)
An investigation of the impact of using different methods for network meta-analysis: a protocol for an empirical evaluation
Abstract
Abstract Background Network meta-analysis, a method to synthesise evidence from multiple treatments, has increased in popularity in the past decade. Two broad approaches are available to synthesise data across networks, namely, arm- and contrast-synthesis models, with a range of models that can be fitted within each. There has been recent debate about the validity of the arm-synthesis models, but to date, there has been limited empirical evaluation comparing results using the methods applied to a large number of networks. We aim to address this gap through the re-analysis of a large cohort of published networks of interventions using a range of network meta-analysis methods. Methods We will include a subset of networks from a database of network meta-analyses of randomised trials that have been identified and curated from the published literature. The subset of networks will include those where the primary outcome is binary, the number of events and participants are reported for each direct comparison, and there is no evidence of inconsistency in the network. We will re-analyse the networks using three contrast-synthesis methods and two arm-synthesis methods. We will compare the estimated treatment effects, their standard errors, treatment hierarchy based on the surface under the cumulative ranking (SUCRA) curve, the SUCRA value, and the between-trial heterogeneity variance across the network meta-analysis methods. We will investigate whether differences in the results are affected by network characteristics and baseline risk. Discussion The results of this study will inform whether, in practice, the choice of network meta-analysis method matters, and if it does, in what situations differences in the results between methods might arise. The results from this research might also inform future simulation studies.
Keywords