International Journal of Mining Science and Technology (May 2024)

Artificial ground freezing of underground mines in cold regions using thermosyphons with air insulation

  • Ahmad F. Zueter,
  • Mohammad Zolfagharroshan,
  • Navid Bahrani,
  • Agus P. Sasmito

Journal volume & issue
Vol. 34, no. 5
pp. 643 – 654

Abstract

Read online

Current practice of underground artificial ground freezing (AGF) typically involves huge refrigeration systems of large economic and environmental costs. In this study, a novel AGF technique is proposed deploying available cold wind in cold regions. This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer. A refrigeration unit can be optionally integrated to meet additional cooling requirements. The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed, resulting in: (1) steering the cooling resources (cold wind or refrigeration) towards zones of interest; and (2) minimizing refrigeration load. This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon. Two Canadian mines are considered: the Cigar Lake Mine and the Giant Mine. The results show that our proposed design can speed the freezing time by 30% at the Giant Mine and by two months at the Cigar Lake Mine. Further, a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine. Overall, this study provides mining practitioners with sustainable solutions of underground AGF.

Keywords