Nature Communications (Aug 2020)

Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets

  • Marc-Andre Schulz,
  • B. T. Thomas Yeo,
  • Joshua T. Vogelstein,
  • Janaina Mourao-Miranada,
  • Jakob N. Kather,
  • Konrad Kording,
  • Blake Richards,
  • Danilo Bzdok

DOI
https://doi.org/10.1038/s41467-020-18037-z
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 15

Abstract

Read online

Schulz et al. systematically benchmark performance scaling with increasingly sophisticated prediction algorithms and with increasing sample size in reference machine-learning and biomedical datasets. Complicated nonlinear intervariable relationships remain largely inaccessible for predicting key phenotypes from typical brain scans.