mBio (Dec 2022)
RfaH Counter-Silences Inhibition of Transcript Elongation by H-NS–StpA Nucleoprotein Filaments in Pathogenic Escherichia coli
Abstract
ABSTRACT Expression of virulence genes in pathogenic Escherichia coli is controlled in part by the transcription silencer H-NS and its paralogs (e.g., StpA), which sequester DNA in multi-kb nucleoprotein filaments to inhibit transcription initiation, elongation, or both. Some activators counter-silence initiation by displacing H-NS from promoters, but how H-NS inhibition of elongation is overcome is not understood. In uropathogenic E. coli (UPEC), elongation regulator RfaH aids expression of some H-NS-silenced pathogenicity operons (e.g., hlyCABD encoding hemolysin). RfaH associates with elongation complexes (ECs) via direct contacts to a transiently exposed, nontemplate DNA strand sequence called operon polarity suppressor (ops). RfaH–ops interactions establish long-lived RfaH–EC contacts that allow RfaH to recruit ribosomes to the nascent mRNA and to suppress transcriptional pausing and termination. Using ChIP-seq, we mapped the genome-scale distributions of RfaH, H-NS, StpA, RNA polymerase (RNAP), and σ70 in the UPEC strain CFT073. We identify eight RfaH-activated operons, all of which were bound by H-NS and StpA. Four are new additions to the RfaH regulon. Deletion of RfaH caused premature termination, whereas deletion of H-NS and StpA allowed elongation without RfaH. Thus, RfaH is an elongation counter-silencer of H-NS. Consistent with elongation counter-silencing, deletion of StpA alone decreased the effect of RfaH. StpA increases DNA bridging, which inhibits transcript elongation via topological constraints on RNAP. Residual RfaH effect when both H-NS and StpA were deleted was attributable to targeting of RfaH-regulated operons by a minor H-NS paralog, Hfp. These operons have evolved higher levels of H-NS–binding features, explaining minor-paralog targeting. IMPORTANCE Bacterial pathogens adapt to hosts and host defenses by reprogramming gene expression, including by H-NS counter-silencing. Counter-silencing turns on transcription initiation when regulators bind to promoters and rearrange repressive H-NS nucleoprotein filaments that ordinarily block transcription. The specialized NusG paralog RfaH also reprograms virulence genes but regulates transcription elongation. To understand how elongation regulators might affect genes silenced by H-NS, we mapped H-NS, StpA (an H-NS paralog), RfaH, σ70, and RNA polymerase (RNAP) locations on DNA in the uropathogenic E. coli strain CFT073. Although H-NS–StpA filaments bind only 18% of the CFT073 genome, all loci at which RfaH binds RNAP are also bound by H-NS–StpA and are silenced when RfaH is absent. Thus, RfaH represents a distinct class of counter-silencer that acts on elongating RNAP to enable transcription through repressive nucleoprotein filaments. Our findings define a new mechanism of elongation counter-silencing and explain how RfaH functions as a virulence regulator.
Keywords