PLoS ONE (Jan 2019)

Cyclic loading test study on a new cast-in-situ insulated sandwich concrete wall.

  • Wentao Qiao,
  • Xiaoxiang Yin,
  • Shengying Zhao,
  • Dong Wang

DOI
https://doi.org/10.1371/journal.pone.0225055
Journal volume & issue
Vol. 14, no. 11
p. e0225055

Abstract

Read online

Insulated sandwich concrete panel (ISCP) is widely used because of its high thermal insulation efficiency and low construction cost. Aiming at improving traditional ISCP, a new cast-in-situ concrete wall structure made of ISCP is proposed, which is composed of thin-walled cold-formed steels, slant steel wire connectors, steel wire meshes, concrete layers, expanded polystyrene sheets and reinforced concrete embedded columns. In order to assess the hysteretic properties of the new insulated sandwich concrete wall and the influence of various parameters, low-frequency horizontal cyclic load tests were carried out on seven full-scale specimens of new type cast-in-situ insulated sandwich concrete wall. The specimens were compared and analyzed with respect to failure mode, bearing capacity, ductility, degradation characteristics and energy dissipation capacity. The results show that the final failure pattern of the specimen is two main diagonal cracks intersecting each other; the bearing capacity is greatly affected by concrete thickness and axial compression ratio, regardless of concrete strength. Brittle failure is typically observed when the steel wire spacing is large, while ductility is pronounced when the concrete layer thickness is small and the concrete strength is low; the smaller the thickness of concrete layer, the faster the stiffness degrades. The wall structure shows a better energy dissipation performance with a smaller steel wire spacing, lower concrete strength and smaller axial compression ratio.