Scientific Reports (Nov 2023)
Changes in sputum microbiota during treatment for nontuberculous mycobacterial pulmonary disease
Abstract
Abstract Limited data exist on longitudinal changes in the sputum bacterial microbiome during treatment in nontuberculous mycobacterial pulmonary disease (NTM-PD) patients. We prospectively collected serial sputum samples from 14 NTM-PD patients during treatment, at the start (n = 14) and at 1 (n = 10), 3 (n = 10), 6 (n = 12), and 12 (n = 7) months. The bacterial microbiome changes were analyzed using 16S rRNA sequences (V3–V4 regions). Subgroup analysis included culture conversion (n = 9) and treatment refractory (n = 5) groups. In all patients, sputum alpha-diversity (ACE, Chao1, and Jackknife) significantly decreased during antibiotic treatment at 1, 3, 6, and 12 months compared to treatment initiation levels. Within the culture conversion group, genus/species-level beta-diversity showed differences at 1, 3, 6, and 12 months compared to treatment initiation (all p < 0.05). However, in the refractory group, there were no differences in beta-diversity at the genus/species levels in the sputum at any time point. In the linear discriminant analysis (LDA) effect sizes (LEfSe) analysis, the culture conversion group exhibited decreasing taxa at various levels (phylum/genus/species), but no significant increase in taxa was observed. LEfSe analysis of the refractory patient group revealed multiple taxa decreased during treatment. However, proportions of Veillonella dispar (LDA = 4.78), Fusobacterium periodonticum (LDA = 4.35), and Pseudomonas aeruginosa (LDA = 2.92) increased as the treatment period progressed in the refractory group. Sputum microbiota diversity decreases during NTM-PD treatment. In the culture conversion group, most taxa decrease, while some increase in the refractory group. These findings suggest that a distinct respiratory microbial community may exist in refractory NTM-PD patients compared to responsive antibiotic-treated patients.