Remote Sensing (Jun 2025)
A High-Accuracy Underwater Object Detection Algorithm for Synthetic Aperture Sonar Images
Abstract
Underwater object detection with Synthetic Aperture Sonar (SAS) images faces many problems, including low contrast, blurred edges, high-frequency noise, and missed small objects. To improve these problems, this paper proposes a high-accuracy underwater object detection algorithm for SAS images, named the HAUOD algorithm. First, considering SAS image characteristics, a sonar preprocessing module is designed to enhance the signal-to-noise ratio of object features. This module incorporates three-stage processing for image quality optimization, and the three stages include collaborative adaptive Contrast Limited Adaptive Histogram Equalization (CLAHE) enhancement, non-local mean denoising, and frequency-domain band-pass filtering. Subsequently, a novel C2fD module is introduced to replace the original C2f module to strengthen perception capabilities for low-contrast objects and edge-blurred regions. The proposed C2fD module integrates spatial differential feature extraction, dynamic feature fusion, and Enhanced Efficient Channel Attention (Enhanced ECA). Furthermore, an underwater multi-scale contextual attention mechanism, named UWA, is introduced to enhance the model’s discriminative ability for multi-scale objects and complex backgrounds. The proposed UWA module combines noise suppression, hierarchical dilated convolution groups, and dual-dimensional attention collaboration. Experiments on the Sonar Common object Detection dataset (SCTD) demonstrate that the proposed HAUOD algorithm achieves superior performance in small object detection accuracy and multi-scenario robustness, attaining a detection accuracy of 95.1%, which is 8.3% higher than the baseline model (YOLOv8n). Compared with YOLOv8s, the proposed HAUOD algorithm can achieve 6.2% higher accuracy with only 50.4% model size, and reduce the computational complexity by half. Moreover, the HAUOD method exhibits significant advantages in balancing computational efficiency and accuracy compared to mainstream detection models.
Keywords