Nature Communications (Jul 2024)

Evaluation of FluSight influenza forecasting in the 2021–22 and 2022–23 seasons with a new target laboratory-confirmed influenza hospitalizations

  • Sarabeth M. Mathis,
  • Alexander E. Webber,
  • Tomás M. León,
  • Erin L. Murray,
  • Monica Sun,
  • Lauren A. White,
  • Logan C. Brooks,
  • Alden Green,
  • Addison J. Hu,
  • Roni Rosenfeld,
  • Dmitry Shemetov,
  • Ryan J. Tibshirani,
  • Daniel J. McDonald,
  • Sasikiran Kandula,
  • Sen Pei,
  • Rami Yaari,
  • Teresa K. Yamana,
  • Jeffrey Shaman,
  • Pulak Agarwal,
  • Srikar Balusu,
  • Gautham Gururajan,
  • Harshavardhan Kamarthi,
  • B. Aditya Prakash,
  • Rishi Raman,
  • Zhiyuan Zhao,
  • Alexander Rodríguez,
  • Akilan Meiyappan,
  • Shalina Omar,
  • Prasith Baccam,
  • Heidi L. Gurung,
  • Brad T. Suchoski,
  • Steve A. Stage,
  • Marco Ajelli,
  • Allisandra G. Kummer,
  • Maria Litvinova,
  • Paulo C. Ventura,
  • Spencer Wadsworth,
  • Jarad Niemi,
  • Erica Carcelen,
  • Alison L. Hill,
  • Sara L. Loo,
  • Clifton D. McKee,
  • Koji Sato,
  • Claire Smith,
  • Shaun Truelove,
  • Sung-mok Jung,
  • Joseph C. Lemaitre,
  • Justin Lessler,
  • Thomas McAndrew,
  • Wenxuan Ye,
  • Nikos Bosse,
  • William S. Hlavacek,
  • Yen Ting Lin,
  • Abhishek Mallela,
  • Graham C. Gibson,
  • Ye Chen,
  • Shelby M. Lamm,
  • Jaechoul Lee,
  • Richard G. Posner,
  • Amanda C. Perofsky,
  • Cécile Viboud,
  • Leonardo Clemente,
  • Fred Lu,
  • Austin G. Meyer,
  • Mauricio Santillana,
  • Matteo Chinazzi,
  • Jessica T. Davis,
  • Kunpeng Mu,
  • Ana Pastore y Piontti,
  • Alessandro Vespignani,
  • Xinyue Xiong,
  • Michal Ben-Nun,
  • Pete Riley,
  • James Turtle,
  • Chis Hulme-Lowe,
  • Shakeel Jessa,
  • V. P. Nagraj,
  • Stephen D. Turner,
  • Desiree Williams,
  • Avranil Basu,
  • John M. Drake,
  • Spencer J. Fox,
  • Ehsan Suez,
  • Monica G. Cojocaru,
  • Edward W. Thommes,
  • Estee Y. Cramer,
  • Aaron Gerding,
  • Ariane Stark,
  • Evan L. Ray,
  • Nicholas G. Reich,
  • Li Shandross,
  • Nutcha Wattanachit,
  • Yijin Wang,
  • Martha W. Zorn,
  • Majd Al Aawar,
  • Ajitesh Srivastava,
  • Lauren A. Meyers,
  • Aniruddha Adiga,
  • Benjamin Hurt,
  • Gursharn Kaur,
  • Bryan L. Lewis,
  • Madhav Marathe,
  • Srinivasan Venkatramanan,
  • Patrick Butler,
  • Andrew Farabow,
  • Naren Ramakrishnan,
  • Nikhil Muralidhar,
  • Carrie Reed,
  • Matthew Biggerstaff,
  • Rebecca K. Borchering

DOI
https://doi.org/10.1038/s41467-024-50601-9
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Accurate forecasts can enable more effective public health responses during seasonal influenza epidemics. For the 2021–22 and 2022–23 influenza seasons, 26 forecasting teams provided national and jurisdiction-specific probabilistic predictions of weekly confirmed influenza hospital admissions for one-to-four weeks ahead. Forecast skill is evaluated using the Weighted Interval Score (WIS), relative WIS, and coverage. Six out of 23 models outperform the baseline model across forecast weeks and locations in 2021–22 and 12 out of 18 models in 2022–23. Averaging across all forecast targets, the FluSight ensemble is the 2nd most accurate model measured by WIS in 2021–22 and the 5th most accurate in the 2022–23 season. Forecast skill and 95% coverage for the FluSight ensemble and most component models degrade over longer forecast horizons. In this work we demonstrate that while the FluSight ensemble was a robust predictor, even ensembles face challenges during periods of rapid change.