Energies (Mar 2023)
Hydrocarbon Generation Mechanism of Mixed Siliciclastic–Carbonate Shale: Implications from Semi–Closed Hydrous Pyrolysis
Abstract
Affected by the complex mechanism of organic–inorganic interactions, the generation–retention–expulsion model of mixed siliciclastic–carbonate sediments is more complicated than that of common siliciclastic and carbonate shale deposited in lacustrine and marine environments. In this study, mixed siliciclastic–carbonate shale from Lucaogou Formation in Junggar Basin was selected for semi–closed hydrous pyrolysis experiments, and seven experiments were conducted from room temperature to 300, 325, 350, 375, 400, 450, and 500 °C, respectively. The quantities and chemical composition of oil, gases, and bitumen were comprehensively analyzed. The results show that the hydrocarbon generation stage of shale in Lucaogou Formation can be divided into kerogen cracking stage (300–350 °C), peak oil generation stage (350–400 °C), wet gas generation stage (400–450 °C), and gas secondary cracking stage (450–500 °C). The liquid hydrocarbon yield (oil + bitumen) reached the peak of 720.42 mg/g TOC at 400 °C. The saturate, aromatic, resin, and asphaltine percentages of bitumen were similar to those of crude oil collected from Lucaogou Formation, indicating that semi–closed pyrolysis could stimulate the natural hydrocarbon generation process. Lucaogou shale does not strictly follow the “sequential” reaction model of kerogen, which is described as kerogen firstly generating the intermediate products of heavy hydrocarbon compounds (NSOs) and NSOs then cracking to generate oil and gas. Indeed, the results of this study show that the generation of oil and gas was synchronous with that of NSOs and followed the “alternate pathway” mechanism during the initial pyrolysis stage. The hydrocarbon expulsion efficiency sharply increased from an average of 27% to 97% at 450 °C, meaning that the shale retained considerable amounts of oil below 450 °C. The producible oil reached the peak yield of 515.45 mg/g TOC at 400 °C and was synchronous with liquid hydrocarbons. Therefore, 400 °C is considered the most suitable temperature for fracturing technology.
Keywords