PeerJ (Jun 2021)
Computational-approach understanding the structure-function prophecy of Fibrinolytic Protease RFEA1 from Bacillus cereus RSA1
Abstract
Microbial fibrinolytic proteases are therapeutic enzymes responsible to ameliorate thrombosis, a fatal cardiac-disorder which effectuates due to excessive fibrin accumulation in blood vessels. Inadequacies such as low fibrin specificity, lethal after-effects and short life-span of available fibrinolytic enzymes stimulates an intensive hunt for novel, efficient and safe substitutes. Therefore, we herewith suggest a novel and potent fibrinolytic enzyme RFEA1 from Bacillus cereus RSA1 (MK288105). Although, attributes such as in-vitro purification, characterization and thrombolytic potential of RFEA1 were successfully accomplished in our previous study. However, it is known that structure-function traits and mode of action significantly aid to commercialization of an enzyme. Also, predicting structural model of a protein from its amino acid sequence is challenging in computational biology owing to intricacy of energy functions and inspection of vast conformational space. Our present study thus reports In-silico structural-functional analysis of RFEA1. Sequence based modelling approaches such as—Iterative threading ASSEmbly Refinement (I-TASSER), SWISS-MODEL, RaptorX and Protein Homology/analogY Recognition Engine V 2.0 (Phyre2) were employed to model three-dimensional structure of RFEA1 and the modelled RFEA1 was validated by structural analysis and verification server (SAVES v6.0). The modelled crystal structure revealed the presence of high affinity Ca1 binding site, associated with hydrogen bonds at Asp147, Leu181, Ile185 and Val187residues. RFEA1 is structurally analogous to Subtilisin E from Bacillus subtilis 168. Molecular docking analysis using PATCH DOCK and FIRE DOCK servers was performed to understand the interaction of RFEA1 with substrate fibrin. Strong RFEA1-fibrin interaction was observed with high binding affinity (−21.36 kcal/mol), indicating significant fibrinolytic activity and specificity of enzyme RFEA1. Overall, the computational research suggests that RFEA1 is a subtilisin-like serine endopeptidase with proteolytic potential, involved in thrombus hydrolysis.
Keywords