Polymers (Mar 2023)

Elastic Modulus of a Carbonized Layer on Polyurethane Treated by Ion-Plasma

  • Vyacheslav S. Chudinov,
  • Igor N. Shardakov,
  • Yaroslav N. Ivanov,
  • Ilya A. Morozov,
  • Anton Y. Belyaev

DOI
https://doi.org/10.3390/polym15061442
Journal volume & issue
Vol. 15, no. 6
p. 1442

Abstract

Read online

Nanocoatings formed by various plasma and chemical methods on the surface of polymeric materials have unique properties. However, the applicability of polymeric materials with nanocoatings under specific temperature and mechanical conditions depends on the physical and mechanical properties of the coating. The determination of Young’s modulus is a task of paramount importance since it is widely used in calculations of the stress–strain state of structural elements and structures in general. Small thicknesses of nanocoatings limit the choice of methods for determining the modulus of elasticity. In this paper, we propose a method for determining the Young’s modulus for a carbonized layer formed on a polyurethane substrate. For its implementation, the results of uniaxial tensile tests were used. This approach made it possible to obtain patterns of change in the Young’s modulus of the carbonized layer depending on the intensity of ion-plasma treatment. These regularities were compared with regularities of changes in the molecular structure of the surface layer caused by plasma treatment of different intensity. The comparison was made on the basis of correlation analysis. Changes in the molecular structure of the coating were determined from the results of infrared Fourier spectroscopy (FTIR) and spectral ellipsometry.

Keywords