Frontiers in Plant Science (Apr 2022)

The Role of Plant Growth Regulators in Modulating Root Architecture and Tolerance to High-Nitrate Stress in Tomato

  • Rongting Ji,
  • Rongting Ji,
  • Ju Min,
  • Yuan Wang,
  • Herbert J. Kronzucker,
  • Herbert J. Kronzucker,
  • Weiming Shi

DOI
https://doi.org/10.3389/fpls.2022.864285
Journal volume & issue
Vol. 13

Abstract

Read online

Plant growth regulators are known to exert strong influences on plant performance under abiotic stress, including exposure to high nitrate, as occurs commonly in intensive vegetable production. However, direct comparative evaluations of growth regulators under otherwise identical conditions in major crop species are scarce. In this study, tomato (Solanum lycopersicum L.) was used as a model crop, and the roles of four common exogenously applied plant growth regulators (MT, melatonin; SA, salicylic acid; HA, humic acid; SNP, sodium nitroprusside) in regulating crop growth were studied under high-nitrate stress. We provide a particular focus on root system architecture and root physiological responses. Our data show that all four growth regulators improve tomato tolerance under high nitrate, but that this occurs to differing extents and via differing mechanisms. Optimal concentrations of MT, SA, HA, and SNP were 50 μmol L–1, 25 μmol L–1, 25 mg L–1, and 50 μmol L–1, respectively. MT and SNP produced the strongest effects. MT enhanced root growth while SNP enhanced above-ground growth. Growth of coarse and thin lateral roots was significantly improved. Furthermore, an enhancement of root vitality and metabolism, improved integrity of root cell membranes, and an increase in antioxidant enzyme activities were found, but regulatory mechanisms were different for each growth regulator. Our results show that in particular the application of MT and SNP can improve growth of tomato in intensive vegetable production under high-nitrate stress and that root growth stimulation is of special importance in procuring these beneficial effects.

Keywords