Antibiotics (Jun 2024)

Comprehensive Analysis of Antiphage Defense Mechanisms: Serovar-Specific Patterns

  • Pavlo Petakh,
  • Valentyn Oksenych,
  • Yevheniya Khovpey,
  • Oleksandr Kamyshnyi

DOI
https://doi.org/10.3390/antibiotics13060522
Journal volume & issue
Vol. 13, no. 6
p. 522

Abstract

Read online

Leptospirosis is a major zoonotic disease caused by pathogenic spirochetes in the genus Leptospira, affecting over a million people annually and causing approximately 60,000 deaths. Leptospira interrogans, a key causative agent, likely possesses defense systems against bacteriophages (leptophages), yet these systems are not well understood. We analyzed 402 genomes of L. interrogans using the DefenseFinder tool to identify and characterize the antiphage defense systems. We detected 24 unique systems, with CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins), PrrC, Borvo, and Restriction-Modification (R-M) being the most prevalent. Notably, Cas were identified in all strains, indicating their central role in phage defense. Furthermore, there were variations in the antiphage system distribution across different serovars, suggesting unique evolutionary adaptations. For instance, Retron was found exclusively in the Canicola serovar, while prokaryotic Argonaute proteins (pAgo) were only detected in the Grippotyphosa serovar. These findings significantly enhance our understanding of Leptospira’s antiphage defense mechanisms. They reveal the potential for the development of serovar-specific phage-based therapies and underscore the importance of further exploring these defense systems.

Keywords