PLoS Genetics (Jun 2020)

The cohesin loader SCC2 contains a PHD finger that is required for meiosis in land plants.

  • Hongkuan Wang,
  • Wanyue Xu,
  • Yujin Sun,
  • Qichao Lian,
  • Cong Wang,
  • Chaoyi Yu,
  • Chengpeng He,
  • Jun Wang,
  • Hong Ma,
  • Gregory P Copenhaver,
  • Yingxiang Wang

DOI
https://doi.org/10.1371/journal.pgen.1008849
Journal volume & issue
Vol. 16, no. 6
p. e1008849

Abstract

Read online

Cohesin, a multisubunit protein complex, is required for holding sister chromatids together during mitosis and meiosis. The recruitment of cohesin by the sister chromatid cohesion 2/4 (SCC2/4) complex has been extensively studied in Saccharomyces cerevisiae mitosis, but its role in mitosis and meiosis remains poorly understood in multicellular organisms, because complete loss-of-function of either gene causes embryonic lethality. Here, we identified a weak allele of Atscc2 (Atscc2-5) that has only minor defects in vegetative development but exhibits a significant reduction in fertility. Cytological analyses of Atscc2-5 reveal multiple meiotic phenotypes including defects in chromosomal axis formation, meiosis-specific cohesin loading, homolog pairing and synapsis, and AtSPO11-1-dependent double strand break repair. Surprisingly, even though AtSCC2 interacts with AtSCC4 in vitro and in vivo, meiosis-specific knockdown of AtSCC4 expression does not cause any meiotic defect, suggesting that the SCC2-SCC4 complex has divergent roles in mitosis and meiosis. SCC2 homologs from land plants have a unique plant homeodomain (PHD) motif not found in other species. We show that the AtSCC2 PHD domain can bind to the N terminus of histones and is required for meiosis but not mitosis. Taken together, our results provide evidence that unlike SCC2 in other organisms, SCC2 requires a functional PHD domain during meiosis in land plants.