Cailiao gongcheng (Dec 2022)

Research progress of key materials in proton exchange membrane fuel cell

  • DU Zhenzhen,
  • WANG Jun,
  • WANG Jing,
  • YU Fan,
  • LI Jiongli,
  • WANG Xudong

DOI
https://doi.org/10.11868/j.issn.1001-4381.2022.000040
Journal volume & issue
Vol. 50, no. 12
pp. 35 – 50

Abstract

Read online

Fuel cell, which directly enables the generation of electricity from the conversion of the fuel through an electrochemical reaction at the electrode and electrolyte interface, without going through the heat engine process, is an incredibly powerful renewable energy technology. The electrochemical reaction in fuel cell is not restricted by the Carnot cycle, so it has high energy conversion efficiency. Proton exchange membrane fuel cell (PEMFC), in particular, has been regarded as the most promising candidate for transportations, portable equipment and fixed devices.However, there are still some problems in PEMFC, including high cost, insufficient power and poor stability, which limit the large-scale commercial application of PEMFC. The basic reason behind these problems lies in the key materials, such as cathode catalyst, gas diffusion layer, proton exchange membrane and bipolar plate in fuel cell, which can not meet the requirements of PEMFC commercialization owing to their high cost and low performance. Therefore, in order to achieve large-scale application of PEMFC, advanced cathode catalysts, gas diffusion layers, proton exchange membranes and bipolar plates are needed. For the requirement of low-cost and high-performance advanced materials for PEMFC, the research status of these key materials and main challenges in their practical application were summarized in the review, and the future development direction was pointed out: developing the technology of large-scale preparation of platinum alloy and metal-nitrogen-carbon (M-N-C) compound catalysts, preparation of proton exchange membranes with high proton conductivity and excellent mechanical property, studying the influence of modified gas diffusion layer on PEMFC performance under different working conditions, developing coatings or new metal materials with excellent corrosion resistance and electrical conductivity for bipolar plates.

Keywords