Biomolecules (May 2019)

Gels of Amyloid Fibers

  • Ruizhi Wang,
  • Xiaojing Yang,
  • Lingwen Cui,
  • Hang Yin,
  • Shaohua Xu

DOI
https://doi.org/10.3390/biom9060210
Journal volume & issue
Vol. 9, no. 6
p. 210

Abstract

Read online

Protein self-assembly and formation of amyloid fibers is an early event of numerous human diseases. Continuous aggregation of amyloid fibers in vitro produces biogels, which led us to suspect that amyloid plaques and neurofibrillary tangles in Alzheimer’s disease are of biogels in nature. We applied atomic force microscopy, size exclusion chromatography, and differential scanning calorimetry to elucidate the gel’s structure, kinetics of gel formation, and melting point. We found that (1) lysozyme gelation occurs when the protein concentration is above 5 mg/mL; (2) nonfibrous protein concentration decreases and plateaus after three days of gel synthesis reaction; (3) colloidal lysozyme aggregates are detectable by both atomic force microscopy (AFM) and fast protein liquid chromatography (FPLC); (4) the gels are a three-dimensional (3D) network crosslinked by fibers coiling around each other; (5) the gels have a high melting point at around around 110 °C, which is weakly dependent on protein concentration; (6) the gels are conductive under an electric field, and (7) they form faster in the presence than in the absence of salt in the reaction buffer. The potential role of the gels formed by amyloid fibers in amyloidosis, particularly in Alzheimer’s disease was thoroughly discussed, as gels with increased viscosity, are known to restrict bulk flow and then circulation of ions and molecules.

Keywords