Nature Communications (Jul 2022)

The Medical Segmentation Decathlon

  • Michela Antonelli,
  • Annika Reinke,
  • Spyridon Bakas,
  • Keyvan Farahani,
  • Annette Kopp-Schneider,
  • Bennett A. Landman,
  • Geert Litjens,
  • Bjoern Menze,
  • Olaf Ronneberger,
  • Ronald M. Summers,
  • Bram van Ginneken,
  • Michel Bilello,
  • Patrick Bilic,
  • Patrick F. Christ,
  • Richard K. G. Do,
  • Marc J. Gollub,
  • Stephan H. Heckers,
  • Henkjan Huisman,
  • William R. Jarnagin,
  • Maureen K. McHugo,
  • Sandy Napel,
  • Jennifer S. Golia Pernicka,
  • Kawal Rhode,
  • Catalina Tobon-Gomez,
  • Eugene Vorontsov,
  • James A. Meakin,
  • Sebastien Ourselin,
  • Manuel Wiesenfarth,
  • Pablo Arbeláez,
  • Byeonguk Bae,
  • Sihong Chen,
  • Laura Daza,
  • Jianjiang Feng,
  • Baochun He,
  • Fabian Isensee,
  • Yuanfeng Ji,
  • Fucang Jia,
  • Ildoo Kim,
  • Klaus Maier-Hein,
  • Dorit Merhof,
  • Akshay Pai,
  • Beomhee Park,
  • Mathias Perslev,
  • Ramin Rezaiifar,
  • Oliver Rippel,
  • Ignacio Sarasua,
  • Wei Shen,
  • Jaemin Son,
  • Christian Wachinger,
  • Liansheng Wang,
  • Yan Wang,
  • Yingda Xia,
  • Daguang Xu,
  • Zhanwei Xu,
  • Yefeng Zheng,
  • Amber L. Simpson,
  • Lena Maier-Hein,
  • M. Jorge Cardoso

DOI
https://doi.org/10.1038/s41467-022-30695-9
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 13

Abstract

Read online

International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Here, the authors present the results of a biomedical image segmentation challenge, showing that a method capable of performing well on multiple tasks will generalize well to a previously unseen task.