Applied Rheology (Feb 2005)

Characteristic Times of Microsturcture Formation in Electrorheological Fluids, Determined by Viscosity and Speckle Activity Measurements

  • Alanis Elvio,
  • Romero Graciela,
  • Martinez Carlos,
  • Alvarez Liliana,
  • Mechetti Magdalena

DOI
https://doi.org/10.1515/arh-2005-0003
Journal volume & issue
Vol. 15, no. 1
pp. 38 – 45

Abstract

Read online

Viscosity measurements of a suspension of cornstarch in silicone oil, at several concentrations and subject to different electrical field strengths, were conducted. An increase in the apparent viscosity, in correlation with the field strength, which is characteristic of the so-called electrorheological fluids (ERF), was observed. For a given field intensity, the value of the viscosity increases rapidly in the first seconds after the application of the electric field, and then it increases slowly until it finally approaches a saturation value. This behaviour of the apparent viscosity has been related to the microstructure formation due to interactions between dipoles induced by the electric field. Characteristic times, related to structure formation after application of an electric field, are investigated by means of diffuse light transmission and speckle-pattern activity measurements. Two characteristic times were found that should be related to the state of aggregation of the suspended particles: orientation of the non-isotropic particles and later chain formation. These results agree reasonably with that obtained from electrorheological measurements. Microscopic observations of structure formation are also reported.

Keywords