Toxics (Apr 2022)

Anxiety and Gene Expression Enhancement in Mice Exposed to Glyphosate-Based Herbicide

  • Yassine Ait bali,
  • Nour-eddine Kaikai,
  • Saadia Ba-M’hamed,
  • Marco Sassoè-Pognetto,
  • Maurizio Giustetto,
  • Mohamed Bennis

DOI
https://doi.org/10.3390/toxics10050226
Journal volume & issue
Vol. 10, no. 5
p. 226

Abstract

Read online

Growing evidence demonstrates that serotonin (5-HT) depletion increases activity in the amygdala and medial prefrontal cortex (mPFC), ultimately leading to anxiety behavior. Previously, we showed that glyphosate-based herbicides (GBHs) increased anxiety levels and reduced the number of serotoninergic fibers within the mPFCs and amygdalas of exposed mice. However, the impact of this 5-HT depletion following GBH exposure on neuronal activity in these structures is still unknown. In this study, we investigated the effects of GBH on immediate early gene (IEG) activation within the mPFCs and amygdalas of treated mice from juvenile age to adulthood and its subsequent effects on anxiety levels. Mice were treated for subchronic (6 weeks) and chronic (12 weeks) periods with 250 or 500 mg/kg/day of GBH and subjected to behavioral testing using the open field and elevated plus maze paradigms. Then, we analyzed the expression levels of c-Fos and pCREB and established the molecular proxies of neuronal activation within the mPFC and the amygdala. Our data revealed that repeated exposure to GBH triggers anxiogenic behavior in exposed mice. Confocal microscopy investigations into the prelimbic/infralimbic regions of the mPFC and in basolateral/central nuclei of the amygdala disclosed that the behavioral alterations are paralleled by a robust increase in the density and labelling intensity of c-Fos- and pCREB-positive cells. Taken together, these data show that mice exposed to GBH display the hyperactivation of the mPFC–amygdala areas, suggesting that this is a potential mechanism underlying the anxiety-like phenotype.

Keywords