International Journal of Molecular Sciences (Dec 2021)

An Efficient Protein Evolution Workflow for the Improvement of Bacterial PET Hydrolyzing Enzymes

  • Valentina Pirillo,
  • Marco Orlando,
  • Davide Tessaro,
  • Loredano Pollegioni,
  • Gianluca Molla

DOI
https://doi.org/10.3390/ijms23010264
Journal volume & issue
Vol. 23, no. 1
p. 264

Abstract

Read online

Enzymatic degradation is a promising green approach to bioremediation and recycling of the polymer poly(ethylene terephthalate) (PET). In the past few years, several PET-hydrolysing enzymes (PHEs) have been discovered, and new variants have been evolved by protein engineering. Here, we report on a straightforward workflow employing semi-rational protein engineering combined to a high-throughput screening of variant libraries for their activity on PET nanoparticles. Using this approach, starting from the double variant W159H/S238F of Ideonella sakaiensis 201-F6 PETase, the W159H/F238A-ΔIsPET variant, possessing a higher hydrolytic activity on PET, was identified. This variant was stabilized by introducing two additional known substitutions (S121E and D186H) generating the TS-ΔIsPET variant. By using 0.1 mg mL−1 of TS-ΔIsPET, ~10.6 mM of degradation products were produced in 2 days from 9 mg mL−1 PET microparticles (~26% depolymerization yield). Indeed, TS-ΔIsPET allowed a massive degradation of PET nanoparticles (>80% depolymerization yield) in 1.5 h using only 20 μg of enzyme mL−1. The rationale underlying the effect on the catalytic parameters due to the F238A substitution was studied by enzymatic investigation and molecular dynamics/docking analysis. The present workflow is a well-suited protocol for the evolution of PHEs to help generate an efficient enzymatic toolbox for polyester degradation.

Keywords