Muhandisī-i Bihdāsht-i Muḥīṭ (May 2020)

Evaluation of the efficiency of a photocatalytic process using the magnetic nanocatalyst (Fe3O4@SiO2@TiO2) in the removal of ceftriaxone from aqueous solutions

  • Hamid Reza Sobhi,
  • Mojtaba Yegane Badi,
  • Ali Esrafili,
  • Mahnaz Ghambarian

Journal volume & issue
Vol. 7, no. 3
pp. 229 – 243

Abstract

Read online

Background & Objectives: Ceftriaxone is an antibiotic which is extensively used to treat a number of various infections. It is mainly accumulated in water and sewage resulting in the environmental and health problems. This study is centered on the evaluation of the efficiency of a photocatalytic process using Fe3O4@SiO2@TiO2 in the removal of ceftriaxone from aqueous solutions. Methods: This research was based on an experimental-practical study. Fe3O4 @ SiO2 @ TiO2 was initially synthesized via a sol-gel method and characterized by SEM, XRD and EDX analyses. The effects of variables such as pH, catalyst concentration, ceftriaxone concentration, contact time, reusability tests (n=7) and degree of mineralization were separately assessed in a laboratory scale. The concentration of ceftriaxone was measured by HPLC at 240 nm. Results: Based on the results obtained, the highest process efficiency of 96.7% was obtained under the following optimal conditions: concentration of ceftriaxone 10 mg/L, pH=3, the catalyst dosage of 2 g/L and a time contact of 120 min. At the end of the process, the degree of mineralization was determined to be 83.7%. Additionally, the data regarding the reusability of the nanocatalyst demonstrated that a 5.2% loss in the removal efficiency was observed after 7 times of reuse. Finally, the results revealed that the removal process of ceftriaxone follows the first-order kinetic model. Conclusion: The results demonstrated that the photocatalytic process using the magnetic nanocatalyst (Fe3O4 @ SiO2 @ TiO2) could be effectively used for the removal of ceftriaxone from aqueous media.

Keywords