Experimental and Molecular Medicine (Jul 2023)

CD38/ADP-ribose/TRPM2-mediated nuclear Ca2+ signaling is essential for hepatic gluconeogenesis in fasting and diabetes

  • So-Young Rah,
  • Yeonsoo Joe,
  • Jeongmin Park,
  • Stefan W. Ryter,
  • Chansu Park,
  • Hun Taeg Chung,
  • Uh-Hyun Kim

DOI
https://doi.org/10.1038/s12276-023-01034-9
Journal volume & issue
Vol. 55, no. 7
pp. 1492 – 1505

Abstract

Read online

Abstract Hepatic glucose production by glucagon is crucial for glucose homeostasis during fasting, yet the underlying mechanisms remain incompletely delineated. Although CD38 has been detected in the nucleus, its function in this compartment is unknown. Here, we demonstrate that nuclear CD38 (nCD38) controls glucagon-induced gluconeogenesis in primary hepatocytes and liver in a manner distinct from CD38 occurring in the cytoplasm and lysosomal compartments. We found that the localization of CD38 in the nucleus is required for glucose production by glucagon and that nCD38 activation requires NAD+ supplied by PKCδ-phosphorylated connexin 43. In fasting and diabetes, nCD38 promotes sustained Ca2+ signals via transient receptor potential melastatin 2 (TRPM2) activation by ADP-ribose, which enhances the transcription of glucose-6 phosphatase and phosphoenolpyruvate carboxykinase 1. These findings shed light on the role of nCD38 in glucagon-induced gluconeogenesis and provide insight into nuclear Ca2+ signals that mediate the transcription of key genes in gluconeogenesis under physiological conditions.