Iranian Journal of Materials Science and Engineering (Mar 2017)
COMPARATIVE MAGNETIC AND PHOTOCATALYTIC PROPERTIES OF COPRECIPITATED ZINC FERRITE NANOPARTICLES BEFORE AND AFTER CALCINATION
Abstract
In this work, the effects of co-precipitation temperature and post calcination on the magnetic properties and photocatalytic activities of ZnFe2O4 nanoparticles were investigated. The structure, magnetic and optical properties of zinc ferrite nanoparticles were characterized by X-ray diffraction (XRD), vibrating sample magnetometry and UV–Vis spectrophotometry techniques. The XRD results showed that the coprecipitated as well as calcined nanoparticles are single phase with partially inverse spinel structures. The magnetization and band gap decreased with the increasing of co-precipitation temperature through the increasing of the crystallite size. However, the post calcination at 500 °C was more effective on the decreasing of magnetization and band gap. Furthermore, photocatalytic activity of zinc ferrite nanoparticles was studied by the degradation of methyl orange under UV-light irradiation. Compare with the coprecipitated ZnFe2O4 nanoparticles with 5% degradation of methyl orange after 5 h UV-light light radiation, the calcined ZnFe2O4 nanoparticles exhibited a better photocatalytic activity with 20% degradation.