Journal of Dairy Science (Jul 2022)
Impaired autophagy aggravates oxidative stress in mammary gland of dairy cows with clinical ketosis
Abstract
ABSTRACT: When ketosis occurs, supraphysiological levels of free fatty acids (FFA) can cause oxidative injury to the mammary gland and autophagy can regulate the cellular oxidative status. The aim of this study was to investigate the autophagy status of mammary tissue and its associations with oxidative stress in healthy and clinically ketotic dairy cows. Mammary tissue and blood samples were collected from healthy cows [n = 15, β-hydroxybutyrate (BHB) 3.0 mM) at 3 to 15 (average = 7) days in milk. For in vitro study, bovine mammary epithelial cells (BMEC) isolated from healthy cows were treated with 0, 0.3, 0.6, or 1.2 mM FFA for 24 h. Furthermore, BMEC were pretreated with 100 nM rapamycin, an autophagy activator, for 4 h or 50 mM 3-methyladenine (3-MA), an autophagy inhibitor, for 1 h, followed by treatment with or without FFA (1.2 mM) for another 24 h. Oxidation indicators and autophagy-related protein abundance were measured. Compared with healthy cows, serum concentrations of FFA, BHB, and malondialdehyde were greater in clinically ketotic cows, but milk production (kg/d), milk protein (kg/d), activities of superoxide dismutase, catalase, and glutathione peroxidase were lower. Abundances of mRNA and protein of autophagy-related gene 5 (ATG5) and 7 (ATG7) were lower, but sequestosome-1 (SQSTM1, also called p62) greater in mammary tissue of clinically ketotic cows. The mRNA abundance of microtubule-associated protein 1 light chain 3 (MAP1LC3, also called LC3) and protein abundance of LC3-II were lower in mammary tissue of clinically ketotic cows. In vitro, exogenous FFA increased the content of malondialdehyde and reactive oxygen species, but decreased the activities of superoxide dismutase, catalase, and plasma glutathione peroxidase. Compared with the 0 mM FFA group, abundance of ATG5, ATG7, LC3-II was greater, but p62 was lower in the 0.6 mM FFA-treated cells. Similarly, abundance of ATG5, ATG7, and LC3-II was lower, but p62 greater in the 1.2 mM FFA-treated cells relative to 0 mM FFA group. Culture with rapamycin alleviated oxidative stress induced by 1.2 mM FFA, whereas 3-MA aggravated it. Overall, results indicated that a low concentration (0.6 mM) of FFA can induce oxidative stress and activate autophagy in BMEC. At higher concentrations of FFA (1.2 mM), autophagy is impaired and oxidative stress is aggravated. Autophagy is a mechanism for BMEC to counteract FFA-induced stress. As such, it could serve as a potential target for further development of novel strategies against oxidative stress.