Sensors (Aug 2024)

Design of a Compact Multiband Monopole Antenna with MIMO Mutual Coupling Reduction

  • Chang-Keng Lin,
  • Ding-Bing Lin,
  • Han-Chang Lin,
  • Chang-Ching Lin

DOI
https://doi.org/10.3390/s24175495
Journal volume & issue
Vol. 24, no. 17
p. 5495

Abstract

Read online

In this article, the authors present the design of a compact multiband monopole antenna measuring 30 × 10 × 1.6 mm3, which is aimed at optimizing performance across various communication bands, with a particular focus on Wi-Fi and sub-6G bands. These bands include the 2.4 GHz band, the 3.5 GHz band, and the 5–6 GHz band, ensuring versatility in practical applications. Another important point is that this paper demonstrates effective methods for reducing mutual coupling through two meander slits on the common ground, resembling a defected ground structure (DGS) between two antenna elements. This approach achieves mutual coupling suppression from −6.5 dB and −9 dB to −26 dB and −13 dB at 2.46 GHz and 3.47 GHz, respectively. Simulated and measured results are in good agreement, demonstrating significant improvements in isolation and overall multiple-input multiple-output (MIMO) antenna system performance. This research proposes a compact multiband monopole antenna and demonstrates a method to suppress coupling in multiband antennas, making them suitable for internet of things (IoT) sensor devices and Wi-Fi infrastructure systems.

Keywords