Acta Crystallographica Section E: Crystallographic Communications (Apr 2019)

N′-(1,3-Benzothiazol-2-yl)benzenesulfonohydrazide: crystal structure, Hirshfeld surface analysis and computational chemistry

  • Thomas C. Baddeley,
  • Marcus V. N. de Souza,
  • James L. Wardell,
  • Mukesh M. Jotani,
  • Edward R. T. Tiekink

DOI
https://doi.org/10.1107/S2056989019003980
Journal volume & issue
Vol. 75, no. 4
pp. 516 – 523

Abstract

Read online

The asymmetric unit of the title compound, C13H11N3O2S2, comprises two independent molecules (A and B); the crystal structure was determined by employing synchrotron radiation. The molecules exhibit essentially the same features with an almost planar benzothiazole ring (r.m.s. deviation = 0.026 and 0.009 Å for A and B, respectively), which forms an inclined dihedral angle with the phenyl ring [28.3 (3) and 29.1 (3)°, respectively]. A difference between the molecules is noted in a twist about the N—S bonds [the C—S—N—N torsion angles = −56.2 (5) and −68.8 (5)°, respectively], which leads to a minor difference in orientation of the phenyl rings. In the molecular packing, A and B are linked into a supramolecular dimer via pairwise hydrazinyl-N—H...N(thiazolyl) hydrogen bonds. Hydrazinyl-N—H...O(sulfonyl) hydrogen bonds between A molecules assemble the dimers into chains along the a-axis direction, while links between centrosymmetrically related B molecules, leading to eight-membered {...HNSO}2 synthons, link the molecules along [001]. The result is an undulating supramolecular layer. Layers stack along the b-axis direction with benzothiazole-C—H...O(sulfonyl) points of contact being evident. The analyses of the calculated Hirshfeld surfaces confirm the relevance of the above intermolecular interactions, but also serve to further differentiate the weaker intermolecular interactions formed by the independent molecules, such as π–π interactions. This is also highlighted in distinctive energy frameworks calculated for the individual molecules.

Keywords