Vaccines (Feb 2023)

M6A-Related Long Non-Coding RNA Displays Utility in Predicting Prognosis, Portraying the Tumor Immune Microenvironment and Guiding Immunotherapy in Pancreatic Ductal Adenocarcinoma

  • Guangyu Xu,
  • Yutian Ji,
  • Lufeng Wang,
  • Hao Xu,
  • Chaodong Shen,
  • Haihao Ye,
  • Xiangchou Yang

DOI
https://doi.org/10.3390/vaccines11030499
Journal volume & issue
Vol. 11, no. 3
p. 499

Abstract

Read online

N6-methyladenosine (m6A) lncRNA plays a pivotal role in cancer. However, little is known about its role in pancreatic ductal adenocarcinoma (PDAC) and its tumor immune microenvironment (TIME). Based on The Cancer Genome Atlas (TCGA) cohort, m6A-related lncRNAs (m6A-lncRNA) with prognostic value were filtered using Pearson analysis and univariate Cox regression analysis. Distinct m6A-lncRNA subtypes were divided using unsupervised consensus clustering. Least absolute shrinkage and selection operator (LASSO) Cox regression was applied to establish an m6A-lncRNA-based risk score signature. The CIBERSORT and ESTIMATE algorithms were employed to analyze the TIME. The expression pattern of TRAF3IP2-AS1 was examined using qRT-PCR. The influence of TRAF3IP2-AS1 knockdown on cell proliferation was estimated by performing CCK8, EdU and colony-formation assays. Flow cytometry was applied to measure the effect of TRAF3IP2-AS1 knockdown on cell cycle and apoptosis. The in vivo anti-tumor effect of TRAF3IP2-AS1 was validated in a tumor-bearing mouse model. Two m6A-lncRNA subtypes with different TIME features were clarified. A risk score signature was constructed as a prognostic predictor based on m6A-lncRNAs. The risk score also correlated with TIME characterization, which facilitated immunotherapy. Finally, the m6A-lncRNA TRAF3IP2-AS1 was proved to be a tumor suppressor in PDAC. We comprehensively demonstrated m6A-lncRNAs to be useful tools for prognosis prediction, TIME depiction and immunotherapeutic guidance in PDAC.

Keywords