International Journal of Advanced Design and Manufacturing Technology (Jun 2019)

Micro Wire Electrical Discharge Machining of MEMS Structures with Optimized Dimensional Deviation

  • Mohammad Tahmasebipour,
  • Younes Tahmasebipour,
  • Ali Vafaie

Journal volume & issue
Vol. 12, no. 2
pp. 103 – 109

Abstract

Read online

Metal-based microelectromechanical systems are widely used in applications such as micro-energy harvesters, micro-heat exchangers and micro-electromagnetic that require high strength and flexibility. In the fabrication of such systems, micro wire electrical discharge machining (MicroWEDM) is majorly used. This paper studies the effect of the MicroWEDM process parameters on the dimensional deviation of machined MEMS structures including microcantilevers and micro-beams using the Taguchi method. Using optimal levels of the parameters including pulse duration (0.8 µs), cutting speed (8.4 mm/min), voltage (17 V) and wire tension (0.5 kg), the dimensional deviation is reduced about 8.65 times compared with the average of experiments results. The order of effect importance of the process parameters on the dimensional deviation of microstructures obtained by the ANOVA analysis of S/N ratios is as follows: pulse duration, wire tension, process voltage and cutting speed. Dimensional deviation of the micro-features was reduced to 1 μm using the optimal levels of the process parameters.

Keywords