Avoiding Pitfalls in Comparison of Activity and Selectivity of Solid Catalysts for Electrochemical HMF Oxidation
Sebastian Wöllner,
Timothy Nowak,
Dr. Gui‐Rong Zhang,
Dr. Nils Rockstroh,
Dr. Hanadi Ghanem,
Prof. Dr. Stefan Rosiwal,
Prof. Dr. Angelika Brückner,
Prof. Dr. Bastian J. M. Etzold
Affiliations
Sebastian Wöllner
Technical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie Alarich-Weiss-Straße 8 64287 Darmstadt Germany
Timothy Nowak
Technical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie Alarich-Weiss-Straße 8 64287 Darmstadt Germany
Dr. Gui‐Rong Zhang
Technical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie Alarich-Weiss-Straße 8 64287 Darmstadt Germany
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle) Friedrich-Alexander-Universität Erlangen-Nürnberg 91058 Erlangen Germany Martensstraße 5
Prof. Dr. Stefan Rosiwal
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle) Friedrich-Alexander-Universität Erlangen-Nürnberg 91058 Erlangen Germany Martensstraße 5
Technical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie Alarich-Weiss-Straße 8 64287 Darmstadt Germany
Abstract Electrocatalytic oxidation of 5‐hydroxymethylfurfural (HMF) offers a renewable approach to produce the value‐added platform chemical 2,5‐furandicarboxylic acid (FDCA). The key for the economic viability of this approach is to develop active and selective electrocatalysts. Nevertheless, a reliable catalyst evaluation protocol is still missing, leading to elusive conclusions on criteria for a high‐performing catalyst. Herein, we demonstrate that besides the catalyst identity, secondary parameters such as materials of conductive substrates for the working electrode, concentration of the supporting electrolyte, and electrolyzer configurations have profound impact on the catalyst performance and thus need to be optimized before assessing the true activity of a catalyst. Moreover, we highlight the importance of those secondary parameters in suppressing side reactions, which has long been overlooked. The protocol is validated by evaluating the performance of free‐standing Cu‐foam, and CuCoO modified with NaPO2H2 and Ni, which were immobilized on boron‐doped diamond (BDD) electrodes. Recommended practices and figure of merits in carefully evaluating the catalyst performance are proposed.