Magnetochemistry (May 2021)

Solvent-Induced Hysteresis Loop in Anionic Spin Crossover (SCO) Isomorph Complexes

  • Emmelyne Cuza,
  • Samia Benmansour,
  • Nathalie Cosquer,
  • Françoise Conan,
  • Carlos J. Gómez-García,
  • Smail Triki

DOI
https://doi.org/10.3390/magnetochemistry7060075
Journal volume & issue
Vol. 7, no. 6
p. 75

Abstract

Read online

Reaction of Fe(II) with the tris-(pyridin-2-yl)ethoxymethane (py3C-OEt) tripodal ligand in the presence of the pseudohalide ancillary NCSe− (E = S, Se, BH3) ligand leads to the mononuclear complex [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCSe)3]2·2CH3CN (3), which has been characterised as an isomorph of the two previously reported complexes, Fe(py3C-OEt)2][Fe(py3C-OEt)(NCE)3]2·2CH3CN, with E = S (1), BH3 (2). X-ray powder diffraction of the three complexes (1–3), associated with the previously reported single crystal structures of 1–2, revealed a monomeric isomorph structure for 3, formed by the spin crossover (SCO) anionic [Fe(py3C-OEt)(NCSe)3]− complex, associated with the low spin (LS) [Fe(py3C-OEt)2]2+ cationic complex and two solvent acetonitrile molecules. In the [Fe(py3C-OEt)2]2+ complex, the metal ion environment involves two py3C-OEt tridentate ligands, while the [Fe(py3C-OEt)(NCSe)3]− anion displays a hexacoordinated environment involving three N-donor atoms of one py3C-OEt ligand and three nitrogen atoms arising from the three (NCSe)− coligands. The magnetic studies for 3 performed in the temperature range 300-5-400 K, indicated the presence of a two-step SCO transition centred around 170 and 298 K, while when the sample was heated at 400 K until its complete desolvation, the magnetic behaviour of the high temperature transition (T1/2 = 298 K) shifted to a lower temperature until the two-step behaviour merged with a gradual one-step transition at ca. 216 K.

Keywords