Communications Physics (Oct 2024)

Stimulated emission from hexagonal silicon-germanium nanowires

  • Marvin A. J. van Tilburg,
  • Riccardo Farina,
  • Victor T. van Lange,
  • Wouter H. J. Peeters,
  • Steffen Meder,
  • Marvin M. Jansen,
  • Marcel A. Verheijen,
  • M. Vettori,
  • Jonathan J. Finley,
  • Erik. P. A. M. Bakkers,
  • Jos. E. M. Haverkort

DOI
https://doi.org/10.1038/s42005-024-01824-1
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Hexagonal crystal phase silicon-germanium (hex-SiGe) features efficient direct bandgap emission between 1.5 and 3.4 µm. For expanding its application potential, the key challenge is to demonstrate material gain for enabling a hex-SiGe semiconductor laser. Here we report the transition from the spontaneous emission regime to the stimulated emission-dominated amplified spontaneous emission regime in the optically excited part of a hexagonal Si0.2Ge0.8 nanowire. We observe narrow resonance peaks arising above a spontaneous emission background, which show lasing signatures such as a threshold and a superlinear increase of the emission. A Hakki-Paoli analysis of the height of the cavity resonances provides the gain spectrum of hex-SiGe, showing evidence for a positive material gain. Measurements of the cavity line widths provide an independent assessment of the total cavity loss. While lasing has not been reached, the observation of optical amplification and amplified spontaneous emission provides a clear roadmap toward lasing in hexagonal SiGe. This opens a new pathway for the monolithic integration of a Si-compatible laser within electronic chips.