Advanced Science (Jun 2024)

Optogenetic Control of Bacterial Cell‐Cell Adhesion Dynamics: Unraveling the Influence on Biofilm Architecture and Functionality

  • Juan José Quispe Haro,
  • Fei Chen,
  • Rachel Los,
  • Shuqi Shi,
  • Wenjun Sun,
  • Yong Chen,
  • Timon Idema,
  • Seraphine V. Wegner

DOI
https://doi.org/10.1002/advs.202310079
Journal volume & issue
Vol. 11, no. 23
pp. n/a – n/a

Abstract

Read online

Abstract The transition of bacteria from an individualistic to a biofilm lifestyle profoundly alters their biology. During biofilm development, the bacterial cell‐cell adhesions are a major determinant of initial microcolonies, which serve as kernels for the subsequent microscopic and mesoscopic structure of the biofilm, and determine the resulting functionality. In this study, the significance of bacterial cell‐cell adhesion dynamics on bacterial aggregation and biofilm maturation is elucidated. Using photoswitchable adhesins between bacteria, modifying the dynamics of bacterial cell‐cell adhesions with periodic dark‐light cycles is systematic. Dynamic cell‐cell adhesions with liquid‐like behavior improve bacterial aggregation and produce more compact microcolonies than static adhesions with solid‐like behavior in both experiments and individual‐based simulations. Consequently, dynamic cell‐cell adhesions give rise to earlier quorum sensing activation, better intermixing of different bacterial populations, improved biofilm maturation, changes in the growth of cocultures, and higher yields in fermentation. The here presented approach of tuning bacterial cell‐cell adhesion dynamics opens the door for regulating the structure and function of biofilms and cocultures with potential biotechnological applications.

Keywords