Identification and Analysis of the Superoxide Dismutase (SOD) Gene Family and Potential Roles in High-Temperature Stress Response of Herbaceous Peony (<i>Paeonia lactiflora</i> Pall.)
Xiaoxuan Chen,
Danqing Li,
Junhong Guo,
Qiyao Wang,
Kaijing Zhang,
Xiaobin Wang,
Lingmei Shao,
Cheng Luo,
Yiping Xia,
Jiaping Zhang
Affiliations
Xiaoxuan Chen
Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
Danqing Li
Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China
Junhong Guo
Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
Qiyao Wang
Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
Kaijing Zhang
Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
Xiaobin Wang
Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
Lingmei Shao
Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
Cheng Luo
Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
Yiping Xia
Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
Jiaping Zhang
Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
The herbaceous peony (Paeonia lactiflora Pall.) plant is world-renowned for its ornamental, medicinal, edible, and oil values. As global warming intensifies, its growth and development are often affected by high-temperature stress, especially in low-latitude regions. Superoxide dismutase (SOD) is an important enzyme in the plant antioxidant systems and plays vital roles in stress response by maintaining the dynamic balance of reactive oxygen species (ROS) concentrations. To reveal the members of then SOD gene family and their potential roles under high-temperature stress, we performed a comprehensive identification of the SOD gene family in the low-latitude cultivar ‘Hang Baishao’ and analyzed the expression patterns of SOD family genes (PlSODs) in response to high-temperature stress and exogenous hormones. The present study identified ten potential PlSOD genes, encoding 145–261 amino acids, and their molecular weights varied from 15.319 to 29.973 kDa. Phylogenetic analysis indicated that PlSOD genes were categorized into three sub-families, and members within each sub-family exhibited similar conserved motifs. Gene expression analysis suggested that SOD genes were highly expressed in leaves, stems, and dormancy buds. Moreover, RNA-seq data revealed that PlCSD1-1, PlCSD3, and PlFSD1 may be related to high-temperature stress response. Finally, based on the Quantitative Real-time PCR (qRT-PCR) results, seven SOD genes were significantly upregulated in response to high-temperature stress, and exogenous EBR and ABA treatments can enhance high-temperature tolerance in P. lactiflora. Overall, these discoveries lay the foundation for elucidating the function of PlSOD genes for the thermotolerance of herbaceous peony and facilitating the genetic breeding of herbaceous peony cultivars with strong high-temperature resistance.