International Journal of Molecular Sciences (May 2024)

Anticancer Effect of Hemin through ANO1 Inhibition in Human Prostate Cancer Cells

  • So-Hyeon Park,
  • Yechan Lee,
  • Hyejin Jeon,
  • Junghwan Park,
  • Jieun Kim,
  • Mincheol Kang,
  • Wan Namkung

DOI
https://doi.org/10.3390/ijms25116032
Journal volume & issue
Vol. 25, no. 11
p. 6032

Abstract

Read online

Anoctamin1 (ANO1), a calcium-activated chloride channel, is overexpressed in a variety of cancer cells, including prostate cancer, and is involved in cancer cell proliferation, migration, and invasion. Inhibition of ANO1 in these cancer cells exhibits anticancer effects. In this study, we conducted a screening to identify novel ANO1 inhibitors with anticancer effects using PC-3 human prostate carcinoma cells. Screening of 2978 approved and investigational drugs revealed that hemin is a novel ANO1 inhibitor with an IC50 value of 0.45 μM. Notably, hemin had no significant effect on intracellular calcium signaling and cystic fibrosis transmembrane conductance regulator (CFTR), a cyclic AMP (cAMP)-regulated chloride channel, and it showed a weak inhibitory effect on ANO2 at 3 μM, a concentration that completely inhibits ANO1. Interestingly, hemin also significantly decreased ANO1 protein levels and strongly inhibited the cell proliferation and migration of PC-3 cells in an ANO1-dependent manner. Furthermore, it strongly induced caspase-3 activation, PARP degradation, and apoptosis in PC-3 cells. These findings suggest that hemin possesses anticancer properties via ANO1 inhibition and could be considered for development as a novel treatment for prostate cancer.

Keywords