BMC Genomics (Jan 2024)

Genome-scale metabolic network model and phenome of solvent-tolerant Pseudomonas putida S12

  • Sol Han,
  • Dohyeon Kim,
  • Youngshin Kim,
  • Sung Ho Yoon

DOI
https://doi.org/10.1186/s12864-023-09940-y
Journal volume & issue
Vol. 25, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Background Pseudomonas putida S12 is a gram-negative bacterium renowned for its high tolerance to organic solvents and metabolic versatility, making it attractive for various applications, including bioremediation and the production of aromatic compounds, bioplastics, biofuels, and value-added compounds. However, a metabolic model of S12 has yet to be developed. Results In this study, we present a comprehensive and highly curated genome-scale metabolic network model of S12 (iSH1474), containing 1,474 genes, 1,436 unique metabolites, and 2,938 metabolic reactions. The model was constructed by leveraging existing metabolic models and conducting comparative analyses of genomes and phenomes. Approximately 2,000 different phenotypes were measured for S12 and its closely related KT2440 strain under various nutritional and environmental conditions. These phenotypic data, combined with the reported experimental data, were used to refine and validate the reconstruction. Model predictions quantitatively agreed well with in vivo flux measurements and the batch cultivation of S12, which demonstrated that iSH1474 accurately represents the metabolic capabilities of S12. Furthermore, the model was simulated to investigate the maximum theoretical metabolic capacity of S12 growing on toxic organic solvents. Conclusions iSH1474 represents a significant advancement in our understanding of the cellular metabolism of P. putida S12. The combined results of metabolic simulation and comparative genome and phenome analyses identified the genetic and metabolic determinants of the characteristic phenotypes of S12. This study could accelerate the development of this versatile organism as an efficient cell factory for various biotechnological applications.

Keywords