BioResources (Nov 2008)

SPECIFIC INTERACTION ACTING AT A CELLULOSE-BINDING DOMAIN/CELLULOSE INTERFACE FOR PAPERMAKING APPLICATION

  • Shingo Yokota,
  • Kumiko Matsuo,
  • Takuya Kitaoka,
  • Hiroyuki Wariishi

Journal volume & issue
Vol. 3, no. 4
pp. 1030 – 1041

Abstract

Read online

Specific and strong cellulose-binding characteristics were utilized for promoting retention of additives in contaminated papermaking systems. Cellulose-binding domain (CBD) of cellulase derived from Trichoderma viride was separated by digestion with papain, and then introduced into anionic polyacrylamide (A-PAM) through a condensation reaction using water-soluble carbodiimide. The CBD-modified A-PAM (CBD-A-PAM) showed good retention on pulp fibers, resulting in high tensile strength paper sheets. The effect remained almost unchanged in the presence of model interfering substances such as ligninsulfonate and Ca2+ ions, whereas commercial cationic paper-strengthening polymer became ineffective. The cellulose-binding force of CBD was quantitatively determined by atomic force microscopy (AFM) in the liquid state. Histidine-tagged CBD protein was obtained using Escherichia coli via an expression of CBD derived from Cellulomonas fimi, and immobilized on a gold-coated AFM probe. A strong attractive force was detected only at a CBD/cellulose interface, even when Ca2+ ions were present in high concentration. Direct estimation of CBD affinity for cellulose substrate by AFM would provide significant information on the interfacial interactions useful for the functional design of papermaking additives.

Keywords