World Electric Vehicle Journal (Aug 2024)

Advancing Dual-Active-Bridge DC–DC Converters with a New Control Strategy Based on a Double Integral Super Twisting Sliding Mode Control

  • Irfan Sami,
  • Waleed Alhosaini,
  • Danish Khan,
  • Emad M. Ahmed

DOI
https://doi.org/10.3390/wevj15080348
Journal volume & issue
Vol. 15, no. 8
p. 348

Abstract

Read online

Dual-Active-Bridge (DAB) DC–DC converters are becoming increasingly favored for their efficiency in transferring electrical power across varying voltage levels. They are crucial in enhancing safety and reliability in various fields, such as renewable energy systems, electric vehicles, and the power supplies of electronic devices. This paper introduces a new control strategy for bidirectional isolated DAB DC–DC converters, implementing a Double Integral Super Twisting Sliding Mode Control (DI-STSMC) to accurately regulate the output voltage and current. The approach starts with a state-space representation to mathematically model the DAB converter. In light of model uncertainties and external disturbances, a robust DI-STSMC controller has been formulated to optimize the DAB converter’s output performance. This method achieves zero steady-state error without chattering and provides a quick response to fluctuations in load and reference changes. The validity of the proposed technique is demonstrated through simulation results and a control hardware-in-the-loop (CHIL) experimental setup, using Typhoon HIL 606 and Imperix B-Box RCP 3.0 on a 230 W DAB converter. Furthermore, the paper offers a comparative analysis of the DI-STSMC with other control strategies, such as the proportional-integral (PI) controller, standard sliding mode control (SMC), and integral sliding mode control (ISMC).

Keywords