Molecules (Apr 2021)

Extraction Optimization of Astragaloside IV by Response Surface Methodology and Evaluation of Its Stability during Sterilization and Storage

  • Lin Xu,
  • Kongjiong Wei,
  • Jiaolong Jiang,
  • Lianfu Zhang

DOI
https://doi.org/10.3390/molecules26082400
Journal volume & issue
Vol. 26, no. 8
p. 2400

Abstract

Read online

Radix Astragali is referred to as a variety of food-medicine herb, and it is commonly applied as Traditional Chinese Medicine (TCM). However, it is extremely difficult to extract its bio-active compounds (astragaloside IV) and apply it in food processing efficiently, which restricts its practical applications. In this study, the conditions required for the extraction of astragaloside IV were optimized by following the response surface methodology. More specifically, ammonia with a concentration of 24% was used as an extracting solvent, the solid–liquid ratio was 1:10 (w:v); the Radix Astragali was soaked at 25 °C for 120 min in advance and then stirred at 25 °C for 52 min (150 rpm) to extract astragaloside IV. This method promoted the transformation of other astragalosides into astragaloside IV and replaced the traditional approach for extraction, the solvent reflux extraction method. The yield of astragaloside IV reached the range of 2.621 ± 0.019 mg/g. In addition, the stability of astragaloside IV was evaluated by detecting its retention rate during sterilization and 60-day storage. As suggested by the results, the astragaloside IV in acidic, low-acidic, and neutral solutions was maintained above 90% after sterilization (95 °C and 60 min) but below 60% in an alkaline solution. High temperature and short-term sterilization approach is more appropriate for astragaloside IV in an alkaline solution. It was also found out that the astragaloside IV obtained using our method was maintained over 90% when stored at room temperature (25 °C), and there was no significant difference observed to low temperature (4 °C) in solutions regardless of acidity.

Keywords