Journal of Agricultural Engineering (Apr 2019)

Temperature, microwave power and pomace thickness impact on the drying kinetics and quality of carrot pomace

  • Ernest Ekow Abano,
  • Robert Sarpong Amoah,
  • Eugene Kwabena Opoku

DOI
https://doi.org/10.4081/jae.2019.872
Journal volume & issue
Vol. 50, no. 1

Abstract

Read online

This study investigated the effect of air temperature, microwave power, and pomace thickness on the drying kinetics and quality of dried carrot pomace. The study established that the drying of carrot pomace occurs in the falling rate period, suggesting that drying was driven by molecular diffusion. The microwave-drying moisture diffusivity increased with microwave power and ranged between 1.57×10–8 and 2.61×10–8 m2/s. As regards convective air-drying, the moisture diffusivity values were between 3.38×10–10 and 8.27×10–10 m2/s. The microwave powerto-mass activation energy was 15.079 W/g for 5 mm, 7.599 W/g for 10 mm and 9.542 W/g for 15 mm dried samples. Meanwhile, the temperature-dependent activation energy for carrot pomace was found to be 27.637 kJ/mol for 5 mm, 17.92 kJ/mol for 10 mm and 38.76 kJ/mol for 15 mm thickness pomace. Generally, drying time decreased with increasing microwave power or air temperature. The ascorbic acid content of the fresh carrot pomace reduced after both microwave and convective air-drying. However, microwave power, and sample thickness had significant effect on the β-carotene content of dried products but air temperature did not have a significant effect. The effect of temperature and sample thickness on brown pigment formation was substantial with air temperature compared to microwave. The study has demonstrated that microwave drying, compared to conventional drying, enhances moisture removal, drying time, and preservation of carotenoids and ascorbic acid. Therefore, microwave drying can be considered as an alternative method for obtaining quality dried carrot pomace.

Keywords