Remote Sensing (Aug 2022)
Translational Compensation Algorithm for Ballistic Targets in Midcourse Based on Template Matching
Abstract
The high-speed movement of a ballistic target will cause folding and translation of the micro-Doppler, which will affect the extraction of micro-motion features. To address the adverse effects of high-speed movement of ballistic targets in midcourse on the extraction of micro-motion features, a novel translational compensation algorithm based on template matching is proposed. Firstly, a 512 × 512 time-frequency map is obtained by binarization and down-sampling. The matching template then convolves the time-frequency map to obtain contour-like points. Then, the upper and lower contour points are preliminarily determined by the extreme value, and all actual contour points are screened out through structural similarity. Lastly, the upper and lower trend lines are determined and translation parameters for compensation by polynomial fitting are estimated. Simulation results show that the proposed algorithm has lower requirements for time-frequency resolution, higher precision and lower time complexity as a whole. Furthermore, it is also applicable to spectral aliasing.
Keywords