PeerJ Computer Science (Mar 2024)

Using deep learning-based artificial intelligence electronic images in improving middle school teachers’ literacy

  • Yixi Zhai,
  • Liqing Chu,
  • Yanlan Liu,
  • Dandan Wang,
  • Yufei Wu

DOI
https://doi.org/10.7717/peerj-cs.1844
Journal volume & issue
Vol. 10
p. e1844

Abstract

Read online Read online

With the rapid development of societal information, electronic educational resources have become an indispensable component of modern education. In response to the increasingly formidable challenges faced by secondary school teachers, this study endeavors to analyze and explore the application of artificial intelligence (AI) methods to enhance their cognitive literacy. Initially, this discourse delves into the application of AI-generated electronic images in the training and instruction of middle school educators, subjecting it to thorough analysis. Emphasis is placed on elucidating the pivotal role played by AI electronic images in elevating the proficiency of middle school teachers. Subsequently, an integrated intelligent device serves as the foundation for establishing a model that applies intelligent classification and algorithms based on the Structure of the Observed Learning Outcome (SOLO). This model is designed to assess the cognitive literacy and teaching efficacy of middle school educators, and its performance is juxtaposed with classification algorithms such as support vector machine (SVM) and decision trees. The findings reveal that, following 600 iterations of the model, the SVM algorithm achieves a 77% accuracy rate in recognizing teacher literacy, whereas the SOLO algorithm attains 80%. Concurrently, the spatial complexities of the SVM-based and SOLO-based intelligent literacy improvement models are determined to be 45 and 22, respectively. Notably, it is discerned that, with escalating iterations, the SOLO algorithm exhibits higher accuracy and reduced spatial complexity in evaluating teachers’ pedagogical literacy. Consequently, the utilization of AI methodologies proves highly efficacious in advancing electronic imaging technology and enhancing the efficacy of image recognition in educational instruction.

Keywords