International Journal for Parasitology: Drugs and Drug Resistance (Apr 2016)
In vitro anthelmintic efficacy of inhibitors of phosphoethanolamine Methyltransferases in Haemonchus contortus
Abstract
The essential phosphobase methylation pathway for synthesis of phosphocholine is unique to nematodes, protozoa and plants, and thus an attractive antiparasitic molecular target. Herein, we screened compounds from the National Cancer Institute (Developmental Therapeutics Program Open Chemical Repository) for specific inhibitory activity against Haemonchus contortus phosphoethanolamine methyltransferases (HcPMT1 and HcPMT2), and tested candidate compounds for anthelmintic activity against adult and third-stage larvae of H. contortus. We identified compound NSC-641296 with IC50 values of 8.3 ± 1.1 μM and 5.1 ± 1.8 μM for inhibition of the catalytic activity of HcPMT1 alone and HcPMT1/HcPMT2 combination, respectively. Additionally we identified compound NSC-668394 with inhibitory IC50 values of 5.9 ± 0.9 μM and 2.8 ± 0.6 μM for HcPMT1 alone and HcPMT1/HcPMT2 combination, respectively. Of the two compounds, NSC-641296 depicted significant anthelmintic activity against third-stage larvae (IC50 = 15 ± 2.9 μM) and adult stages (IC50 = 7 ± 2.9 μM) of H. contortus, with optimal effective in vitro concentrations being 2-fold and 4-fold, respectively, lower than its cytotoxic IC50 (29 ± 2.1 μM) in a mammalian cell line. Additionally, we identified two compounds, NSC-158011 and NSC-323241, with low inhibitory activity against the combined activity of HcPMT1 and HcPMT2, but both compounds did not show any anthelmintic activity against H. contortus. The identification of NSC-641296 that specifically inhibits a unique biosynthetic pathway in H. contortus and has anthelmintic activity against both larval and adult stages of H. contortus, provides impetus for the development of urgently needed new efficacious anthelmintics to address the prevailing problem of anthelmintic-resistant H. contortus. Keywords: Haemonchus contortus, Phosphoethanolamine N-methyltransferase, Phosphatidylcholine, Chemical inhibitors, Anthelmintic activity