Revista Brasileira de Ciência do Solo (Feb 2015)
COMPARAÇÃO DE ESQUEMAS DE AMOSTRAGEM PARA TREINAMENTO DE MODELOS PREDITORES NO MAPEAMENTO DIGITAL DE CLASSES DE SOLOS
Abstract
Os modelos preditores usados no mapeamento digital de solos (MDS) precisam ser treinados com dados que captem ao máximo a variação dos atributos do terreno e dos solos, a fim de gerar correlações adequadas entre as variáveis ambientais e a ocorrência dos solos. Para avaliar a acurácia desses modelos, tem sido constatado o uso de diferentes métodos de avaliação da acurácia no MDS. Os objetivos deste estudo foram comparar o uso de três esquemas de amostragem para treinar algoritmo de árvore de classificação (CART) e avaliar a capacidade de predição dos modelos gerados por meio de quatro métodos. Foram utilizados os esquemas de amostragem: aleatório simples; proporcional à área de cada unidade de mapeamento de solos (UM); e estratificado pelo número de UM. Os métodos de avaliação testados foram: aparente, divisão percentual, validação cruzada com 10 subconjuntos e reamostragem com sete conjuntos de dados independentes. As acurácias dos modelos estimadas pelos métodos foram comparadas com as acurácias mensuradas obtidas pela comparação dos mapas gerados, a partir de cada esquema de amostragem, com o mapa convencional de solos na escala 1:50.000. Os esquemas de amostragem influenciaram na quantidade de UMs preditas e na acurácia dos modelos e dos mapas gerados. Os esquemas de amostragem proporcional e estratificada resultaram mapas digitais menos acurados, e a acurácia dos modelos variou conforme o método de avaliação empregado. A amostragem aleatória resultou no mapa digital mais acurado e apresentou valores da acurácia semelhantes para todos os métodos de avaliação testados.
Keywords