Stem Cell Research (Oct 2021)

Hypertonic pressure affects the pluripotency and self-renewal of mouse embryonic stem cells

  • Yan-Lei Fan,
  • Hu-Cheng Zhao,
  • Xi-Qiao Feng

Journal volume & issue
Vol. 56
p. 102537

Abstract

Read online

As an important mechanical cue in the extracellular microenvironment, osmotic stress directly affects the proliferation, migration, and differentiation of cells. In this paper, we focused on the influence of hypertonic pressure on the colony morphology, stemness, and self-renew of mouse embryonic stem cells (mESCs). Our results showed that culture media with hypertonic pressure are more conducive to the maintenance of 3D colony morphology and pluripotency of mESCs after withdrawing the glycogen synthase kinase 3β (GSK3β) inhibitor CHIR99021 and the mitogen-activated protein kinase (MEK) inhibitor PD0325901 (hereinafter referred to as 2i) for 48 h. Furthermore, we revealed the microscopic mechanisms of the this finding: hypertonic pressure resulted in the depolymerization of F-actin cytoskeleton and limits Yes-associated protein (hereinafter referred to as YAP) transmission into the nucleus which play a vital role in the regulation of cell proliferation, and resulting in cell-cycle arrest at last.

Keywords