Zearalenone Promotes Uterine Hypertrophy through AMPK/mTOR Mediated Autophagy
Lijie Yang,
Wenshuang Liao,
Jiuyuan Dong,
Xiangjin Chen,
Libo Huang,
Weiren Yang,
Shuzhen Jiang
Affiliations
Lijie Yang
Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
Wenshuang Liao
Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
Jiuyuan Dong
Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
Xiangjin Chen
Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
Libo Huang
Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
Weiren Yang
Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
Shuzhen Jiang
Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
Zearalenone (ZEN), a non-steroidal Fusarium graminearum with an estrogen effect, can cause damage to the gastrointestinal tract, immune organs, liver, and reproductive system. Further analysis of the mechanism of ZEN has become an important scientific issue. We have established in vivo and in vitro models of ZEN intervention, used AMPK/mTOR as a targeted pathway for ZEN reproductive toxicity, and explored the molecular mechanism by which ZEN may induce uterine hypertrophy in weaned piglets. Our study strongly suggested that ZEN can activate the phosphorylation of AMPK in uterine endometrial epithelium cells, affect the phosphorylation level of mTOR through TSC2 and Rheb, induce autophagy, upregulate the expression of proliferative genes PCNA and BCL2, downregulate the expression of apoptotic gene BAX, promote uterine endometrial epithelium cells proliferation, and ultimately lead to thickening of the endometrial and myometrium, increased density of uterine glands, and induce uterine hypertrophy.