International Journal of Advanced Design and Manufacturing Technology (Jun 2020)
Simulation of Ultrasonic Welding of Al-Cu Dissimilar Metals for Battery Joining
Abstract
Ultrasonic welding is gaining popularity for joining of thin and dissimilar materials and foils in the fabrication of automotive Li-ion battery packs because of excellent efficiency, high production rate, high welding quality, etc. Precise control of the parameters of the welding process plays an important role in achieving good joint quality. Numerical simulation can greatly help control the main input parameters such as frequency, clamping pressure, friction coefficient, and vibration amplitude. In this present work, a three-dimensional thermo-mechanical Finite Element (FE) model is proposed using ABAQUS/EXPLICIT for the dissimilar Al to Cu weld to predict the deformation and temperature as output parameters during welding process by varying input parameters. The simulation results showed that the clamping pressure, vibration frequency and friction coefficient have a great influence on heat production during the process which was critical to determine the final quality of the welded joint. Studies also showed that increased clamping force and welding frequency led to increased deformation.