Immunity & Ageing (Jan 2023)
Mitochondrial DNA and inflammatory proteins are higher in extracellular vesicles from frail individuals
Abstract
Abstract Background Frailty, a clinical syndrome commencing at midlife, is a risk for morbidity and mortality. Little is known about the factors that contribute to the chronic inflammatory state associated with frailty. Extracellular vesicles (EVs) are small, membrane-bound vesicles that are released into the circulation and are mediators of intercellular communication. We examined whether mitochondrial DNA (mtDNA) and inflammatory proteins in EVs may act as damage-associated molecular pattern (DAMP) molecules in frailty. Results To address whether EVs and their associated mtDNA and inflammatory protein cargo are altered with frailty, EVs were isolated from non-frail (n = 90) and frail (n = 87) middle-aged (45–55 years) participants from the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study. EV concentration was highest in frail White participants. EV mtDNA levels were significantly higher in frail individuals compared to non-frail individuals. The presence of six inflammatory proteins in EVs (FGF-21, HGF, IL-12B, PD-L1, PRDX3, and STAMBP) were significantly associated with frailty. EV inflammatory proteins were significantly altered by frailty status, race, sex, and poverty status. Notably, frail White participants had higher levels of EV-associated CD5, CD8A, CD244, CXCL1, CXCL6, CXCL11, LAP-TGF-beta-1 and MCP-4 compared to frail and non-frail African American participants. Frail White participants living below poverty had higher levels of EV-associated uPA. EV-associated CCL28 levels were highest in non-frail women and CXCL1 were highest in non-frail men. Men living below poverty had higher levels of CD5, CD8A, CXCL1, LAP-TGF-beta-1, and uPA. CXCL6 levels were significantly higher in individuals living above poverty. There was a significant correlation between EV mtDNA levels and the presence of inflammatory proteins. Conclusions These data suggest that mtDNA within EVs may act as a DAMP molecule in frailty. Its association with chemokines and other inflammatory EV cargo proteins, may contribute to the frailty phenotype. In addition, the social determinant of health, poverty, influences the inflammatory cargo of EVs in midlife.
Keywords