Molecules (Mar 2023)

A Novel Fluorescent Aptasensor for Arsenic(III) Detection Based on a Triple-Helix Molecular Switch

  • Min Yuan,
  • Ye Yang,
  • Nguyen Thi Quynh Chau,
  • Qinqin Zhang,
  • Xiuxiu Wu,
  • Jiaye Chen,
  • Zhiwei Wu,
  • Heng Zhong,
  • Yuanyuan Li,
  • Fei Xu

DOI
https://doi.org/10.3390/molecules28052341
Journal volume & issue
Vol. 28, no. 5
p. 2341

Abstract

Read online

A novel aptamer-based fluorescent-sensing platform with a triple-helix molecular switch (THMS) was proposed as a switch for detecting the arsenic(III) ion. The triple helix structure was prepared by binding a signal transduction probe and arsenic aptamer. Additionally, the signal transduction probe labeled with fluorophore (FAM) and quencher (BHQ1) was employed as a signal indicator. The proposed aptasensor is rapid, simple and sensitive, with a limit of detection of 69.95 nM. The decrease in peak fluorescence intensity shows a linear dependence, with the concentration of As(III) in the range of 0.1 µM to 2.5 µM. The whole detection process takes 30 min. Moreover, the THMS-based aptasensor was also successfully used to detect As(III) in a real sample of Huangpu River water with good recoveries. The aptamer-based THMS also presents distinct advantages in stability and selectivity. The proposed strategy developed herein can be extensively applied in the field of food inspection.

Keywords