Allergy, Asthma & Clinical Immunology (Nov 2023)

Helicobacter pylori infection attenuates 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in C57/BL6 mice

  • Shuxian Wang,
  • Xiaokang Wang,
  • Jiaqi Liu,
  • Yaqian Li,
  • Minghui Sun,
  • Guoqiang Zhu,
  • Xiaofang Zhu

DOI
https://doi.org/10.1186/s13223-023-00851-x
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Although numerous studies have suggested a negative correlation between Helicobacter pylori (H. pylori) infection and allergies, there has been limited research on the relationship between H. pylori infections and atopic dermatitis (AD). The present study aimed to investigate the effects of H. pylori infection in an AD mouse model and identify potential mechanisms related to type 2 immunity, skin barrier defects, and pruritus. Methods A model of AD-like symptoms was established with 2,4-dinitrochlorobenzene (DNCB) after infection of the gastric cavity with H. pylori. Analysis of the expression of key inflammatory cytokines and serum levels of immunoglobulin E (IgE) was based on enzyme-linked immunosorbent assay (ELISA). The expression of filaggrin (FLG) and loricrin (LOR) were analyzed by immunohistochemistry staining. The evaluation of STAT1, STAT3, phosphorylated STAT1 (phospho-STAT1), and phosphorylated STAT3 (phospho-STAT1) expression levels in skin lesions was performed using western blot. Results The present study showed that the H. pylori-positive AD group (HP+AD+) exhibited milder skin lesions, including erythema, erosion, swelling, and scaling, than the H. pylori-negative AD group (HP−AD+). Additionally, HP+AD+ displayed lower levels of IgE in serum, and downregulated expression of interleukins 4 and 31 (IL-4 and IL-31) in serum. Furthermore, HP+AD+ demonstrated higher expression of filaggrin and loricrin than HP−AD+. Notably, H. pylori significantly reduced the amount of phosphorylated STAT1 and STAT3. Conclusion Helicobacter pylori infection negatively regulates the inflammatory response by affecting inflammatory factors in the immune response, and repairs the defective epidermal barrier function. In addition, H. pylori infection may reduce IL-31, thereby alleviating pruritus. These effects may be associated with the inhibition of JAK–STAT signaling activation.

Keywords